Nemo
Python装饰器详解
Python装饰器详解

How to make a chain of function decorators?

什么是装饰器

  • 装饰器的本质是函数。
  • 装饰器放在一个函数开始定义的地方,就像一顶帽子一样戴在这个函数的头上。和这个函数绑定在一起。
  • 我们调用这个函数的时候,第一件事并不是执行这个函数,而是将这个函数做为参数传入它头顶上这顶帽子,这顶帽子我们称之为装饰器

从函数开始

函数定义

理解装饰器前,需要明白函数的工作原理,我们先从一个最简单函数定义开始:

def foo(num):
    return num + 1

上面定义了一个函数,名字叫foo,也可以把 foo 可理解为变量名,该变量指向一个函数对象:

https://kanghaov-img-1256185664.file.myqcloud.com/2019/08/15/56b8ce8ededf5.png

调用函数只需要给函数名加上括号并传递必要的参数(如果函数定义的时候有参数的话)

value = foo(3)
print(value) # 4

变量名 foo 现在指向 <function foo at 0x1030060c8> 函数对象,但它也可以指向另外一个函数。

def bar():
    print(&quot;bar&quot;)
foo = bar
foo() # bar

https://kanghaov-img-1256185664.file.myqcloud.com/2019/08/15/1ee2ed5262648.png

函数作为返回值

在Python中,一切皆为对象,函数也不例外,它可以像整数一样作为其它函数的返回值,例如:

def foo():
    return 1

def bar():
    return foo #注意这里没有括号

print(bar()) # &lt;function foo at 0x10a2f4140&gt;

print(bar()()) # 1
# 等价于
print(foo()) # 1

调用函数 bar() 的返回值是一个函数对象 ,因为返回值是函数,所以我们可以继续对返回值进行调用(记住:调用函数就是在函数名后面加())调用bar()()相当于调用 foo(),因为 变量 foo 指向的对象与 bar() 的返回值是同一个对象。

https://kanghaov-img-1256185664.file.myqcloud.com/2019/08/15/09c4abd5d8918.png

函数作为参数

函数还可以像整数一样作为函数的参数,例如:

def foo(num):
    return num + 1

def bar(fun):
    return fun(3)

value = bar(foo)
print(value)  # 4

函数 bar 接收一个参数,这个参数是一个可被调用的函数对象,把函数 foo 传递到 bar中去时,foo 和 fun 两个变量名指向的都是同一个函数对象,所以调用 fun(3) 相当于调用 foo(3)。

https://kanghaov-img-1256185664.file.myqcloud.com/2019/08/15/b554af1eb25a5.png

函数嵌套

函数不仅可以作为参数和返回值,函数还可以定义在另一个函数中,作为嵌套函数存在,例如:

def outer():
    x = 1
    def inner():
        print(x)
    inner() # 注意这里有括号,直接被调用

outer() # 1

inner做为嵌套函数,它可以访问外部函数的变量,调用 outer 函数时,发生了3件事:

  1. 给 变量 x 赋值为1
  2. 定义嵌套函数 inner,此时并不会执行 inner 中的代码,因为该函数还没被调用,直到第3步
  3. 调用 inner 函数,执行 inner 中的代码逻辑。

闭包

再来看一个例子:

def outer(x):
    def inner():
        print(x)

    return inner #没括号,不被直接调用
closure = outer(1) # closure就是一个闭包
closure() # 1

同样是嵌套函数,只是稍改动一下,把局部变量 x 作为参数了传递进来,嵌套函数不再直接在函数里被调用,而是作为返回值返回,这里的 closure就是一个闭包,本质上它还是函数,闭包是引用了自由变量(x)的函数(inner)

装饰器基础

继续往下看:

def foo():
    print(&quot;foo&quot;)

上面这个函数这可能是史上最简单的业务代码了,虽然没什么用,但是能说明问题就行。现在,有一个新的需求,需要在执行该函数时加上日志:

def foo():
    print(&quot;记录日志开始&quot;)
    print(&quot;foo&quot;)
    print(&quot;记录日志结束&quot;)

功能实现,唯一的问题就是它需要侵入到原来的代码里面,把日志逻辑加上去,如果还有好几十个这样的函数要加日志,也必须这样做,显然,这样的代码一点都不Pythonic。那么有没有可能在不修改业务代码的前提下,实现日志功能呢?答案就是装饰器。

def outer(func):
    def inner():
        print(&quot;记录日志开始&quot;)
        func() # 业务函数
        print(&quot;记录日志结束&quot;)
    return inner

def foo():
    print(&quot;foo&quot;)

foo = outer(foo)
foo()

我没有修改 foo 函数里面的任何逻辑,只是给 foo 变量重新赋值了,指向了一个新的函数对象。最后调用 foo(),不仅能打印日志,业务逻辑也执行完了。现在来分析一下它的执行流程。

这里的 outer 函数其实就是一个装饰器,装饰器是一个带有函数作为参数并返回一个新函数的闭包本质上装饰器也是函数。outer 函数的返回值是 inner 函数,在 inner 函数中,除了执行日志操作,还有业务代码,该函数重新赋值给 foo 变量后,调用 foo() 就相当于调用 inner()

foo 重新赋值前:

https://kanghaov-img-1256185664.file.myqcloud.com/2019/08/15/2150005c795c4.png

重新赋值后,foo = outer(foo)

https://kanghaov-img-1256185664.file.myqcloud.com/2019/08/15/42f37636c4946.png

另外,Python为装饰器提供了语法糖 @,它用在函数的定义处:

@outer
def foo():
    print(&quot;foo&quot;)

foo()

这样就省去了手动给foo重新赋值的步骤。

装饰器的使用方法很固定

  1. 先定义一个装饰器(帽子)
  2. 再定义你的业务函数或者类(人)
  3. 最后把这装饰器(帽子)扣在这个函数(人)头上

就像下面这样子

def decorator(func):
    def wrapper(*args, **kw):
        return func()
    return wrapper

@decorator
def function():
    print(&quot;hello, decorator&quot;)

实际上,装饰器并不是编码必须性,意思就是说,你不使用装饰器完全可以,它的出现,应该是使我们的代码

  • 更加优雅,代码结构更加清晰
  • 将实现特定的功能代码封装成装饰器,提高代码复用率,增强代码可读性

接下来,我将以实例讲解,如何编写出各种简单及复杂的装饰器。

装饰器进阶

日志打印器

首先是日志打印器
实现的功能:

  1. 在函数执行前,先打印一行日志告知一下主人,我要执行函数了。
  2. 在函数执行完,也不能拍拍屁股就走人了,咱可是有礼貌的代码,再打印一行日志告知下主人,我执行完啦。
# 这是装饰器函数,参数 func 是被装饰的函数
def logger(func):
    def wrapper(*args, **kw):
        print(&#039;主人,我准备开始执行:{} 函数了:&#039;.format(func.__name__))

        # 真正执行的是这行。
        func(*args, **kw)

        print(&#039;主人,我执行完啦。&#039;)
    return wrapper

假如,我的业务函数是,计算两个数之和。写好后,直接给它带上帽子。

@logger
def add(x, y):
    print(&#039;{} + {} = {}&#039;.format(x, y, x+y))

然后执行一下 add 函数。

add(200, 50)

来看看输出了什么?

主人,我准备开始执行:add 函数了:
200 + 50 = 250
主人,我执行完啦。

时间计时器

再来看看 时间计时器
实现功能:顾名思义,就是计算一个函数的执行时长。

# 这是装饰函数
def timer(func):
    def wrapper(*args, **kw):
        t1=time.time()
        # 这是函数真正执行的地方
        func(*args, **kw)
        t2=time.time()

        # 计算下时长
        cost_time = t2-t1
        print(&quot;花费时间:{}秒&quot;.format(cost_time))
    return wrapper

假如,我们的函数是要睡眠10秒。这样也能更好的看出这个计算时长到底靠不靠谱。

import time

@timer
def want_sleep(sleep_time):
    time.sleep(sleep_time)

want_sleep(10)

来看看输出,如预期一样,输出10秒。

花费时间:10.0073800086975098秒

带参数的函数装饰器

通过上面两个简单的入门示例,你应该能体会到装饰器的工作原理了。

不过,装饰器的用法还远不止如此,深究下去,还大有文章。今天就一起来把这个知识点学透。

回过头去看看上面的例子,装饰器是不能接收参数的。其用法,只能适用于一些简单的场景。不传参的装饰器,只能对被装饰函数,执行固定逻辑。

装饰器本身是一个函数,做为一个函数,如果不能传参,那这个函数的功能就会很受限,只能执行固定的逻辑。这意味着,如果装饰器的逻辑代码的执行需要根据不同场景进行调整,若不能传参的话,我们就要写两个装饰器,这显然是不合理的。

比如我们要实现一个可以定时发送邮件的任务(一分钟发送一封),定时进行时间同步的任务(一天同步一次),就可以自己实现一个 periodic_task (定时任务)的装饰器,这个装饰器可以接收一个时间间隔的参数,间隔多长时间执行一次任务。

可以这样像下面这样写,由于这个功能代码比较复杂,不利于学习,这里就不贴了。

@periodic_task(spacing=60)
def send_mail():
     pass

@periodic_task(spacing=86400)
def ntp()
    pass

那我们来自己创造一个伪场景,可以在装饰器里传入一个参数,指明国籍,并在函数执行前,用自己国家的母语打一个招呼。

# 小明,中国人
@say_hello(&quot;china&quot;)
def xiaoming():
    pass

# jack,美国人
@say_hello(&quot;america&quot;)
def jack():
    pass

那我们如果实现这个装饰器,让其可以实现传参呢?

会比较复杂,需要两层嵌套。

def say_hello(country):
    def wrapper(func):
        def deco(*args, **kwargs):
            if country == &quot;china&quot;:
                print(&quot;你好!&quot;)
            elif country == &quot;america&quot;:
                print(&#039;hello.&#039;)
            else:
                return

            # 真正执行函数的地方
            func(*args, **kwargs)
        return deco
    return wrapper

来执行一下

xiaoming()
print(&quot;------------&quot;)
jack()

看看输出结果。

你好!
------------
hello.

高阶:不带参数的类装饰器

以上都是基于函数实现的装饰器,在阅读别人代码时,还可以时常发现还有基于类实现的装饰器。

基于类装饰器的实现,必须实现 __call__ __init__ 两个内置函数。
__init__ :接收被装饰函数
__call__ :实现装饰逻辑。

还是以日志打印这个简单的例子为例

class logger(object):
    def __init__(self, func):
        self.func = func

    def __call__(self, *args, **kwargs):
        print(&quot;[INFO]: the function {func}() is running...&quot;\
            .format(func=self.func.__name__))
        return self.func(*args, **kwargs)

@logger
def say(something):
    print(&quot;say {}!&quot;.format(something))

say(&quot;hello&quot;)

执行一下,看看输出

[INFO]: the function say() is running...
say hello!

高阶:带参数的类装饰器

上面不带参数的例子,你发现没有,只能打印 INFO 级别的日志,正常情况下,我们还需要打印DEBUG WARNING 等级别的日志。这就需要给类装饰器传入参数,给这个函数指定级别了。

带参数和不带参数的类装饰器有很大的不同。

__init__ :不再接收被装饰函数,而是接收传入参数。
__call__:接收被装饰函数,实现装饰逻辑。

class logger(object):
    def __init__(self, level=&#039;INFO&#039;):
        self.level = level

    def __call__(self, func): # 接受函数
        def wrapper(*args, **kwargs):
            print(&quot;[{level}]: the function {func}() is running...&quot;\
                .format(level=self.level, func=func.__name__))
            func(*args, **kwargs)
        return wrapper  #返回函数

@logger(level=&#039;WARNING&#039;)
def say(something):
    print(&quot;say {}!&quot;.format(something))

say(&quot;hello&quot;)

我们指定 WARNING 级别,运行一下,来看看输出。

[WARNING]: the function say() is running...
say hello!

使用偏函数与类实现装饰器

绝大多数装饰器都是基于函数和闭包实现的,但这并非制造装饰器的唯一方式。

事实上,Python 对某个对象是否能通过装饰器(@decorator)形式使用只有一个要求: decorator 必须是一个“可被调用(callable)的对象

对于这个 callable 对象,我们最熟悉的就是函数了。

除函数之外,类也可以是 callable 对象,只要实现了 __call__ 函数(上面几个例子已经接触过了)。

还有容易被人忽略的偏函数其实也是 callable 对象。

接下来就来说说,如何使用 类和偏函数结合实现一个与众不同的装饰器。

如下所示,DelayFunc 是一个实现了 __call__ 的类,delay 返回一个偏函数,在这里 delay 就可以做为一个装饰器。(以下代码摘自 Python工匠:使用装饰器的小技巧)

import time
import functools

class DelayFunc:
    def __init__(self,  duration, func):
        self.duration = duration
        self.func = func

    def __call__(self, *args, **kwargs):
        print(f&#039;Wait for {self.duration} seconds...&#039;)
        time.sleep(self.duration)
        return self.func(*args, **kwargs)

    def eager_call(self, *args, **kwargs):
        print(&#039;Call without delay&#039;)
        return self.func(*args, **kwargs)

def delay(duration):
    &quot;&quot;&quot;
    装饰器:推迟某个函数的执行。
    同时提供 .eager_call 方法立即执行
    &quot;&quot;&quot;
    # 此处为了避免定义额外函数,
    # 直接使用 functools.partial 帮助构造 DelayFunc 实例
    return functools.partial(DelayFunc, duration)

我们的业务函数很简单,就是相加

@delay(duration=2)
def add(a, b):
    return a+b

来看一下执行过程

>&gt;&gt; add    # 可见 add 变成了 Delay 的实例
&lt;__main__.DelayFunc object at 0x107bd0be0&gt;
>&gt;&gt;
>&gt;&gt; add(3,5)  # 直接调用实例,进入 __call__
Wait for 2 seconds...
8
>&gt;&gt;
>&gt;&gt; add.func # 实现实例方法
&lt;function add at 0x107bef1e0&gt;

如何写能装饰类的装饰器?

用 Python 写单例模式的时候,常用的有三种写法。其中一种,是用装饰器来实现的。

以下便是我自己写的装饰器版的单例写法。

instances = {}

def singleton(cls):
    def get_instance(*args, **kw):
        cls_name = cls.__name__
        print(&#039;===== 1 ====&#039;)
        if not cls_name in instances:
            print(&#039;===== 2 ====&#039;)
            instance = cls(*args, **kw)
            instances[cls_name] = instance
        return instances[cls_name]
    return get_instance

@singleton
class User:
    _instance = None

    def __init__(self, name):
        print(&#039;===== 3 ====&#039;)
        self.name = name

可以看到我们用singleton 这个装饰函数来装饰 User 这个类。装饰器用在类上,并不是很常见,但只要熟悉装饰器的实现过程,就不难以实现对类的装饰。在上面这个例子中,装饰器就只是实现对类实例的生成的控制而已。

其实例化的过程,你可以参考我这里的调试过程,加以理解。

https://kanghaov-img-1256185664.file.myqcloud.com/2019/08/15/7bb8a514547b6.jpg

wraps 装饰器有啥用?

在 functools 标准库中有提供一个 wraps 装饰器,你应该也经常见过,那他有啥用呢?

先来看一个例子

def wrapper(func):
    def inner_function():
        pass
    return inner_function

@wrapper
def wrapped():
    pass

print(wrapped.__name__)
#inner_function

为什么会这样子?不是应该返回 func 吗?

这也不难理解,因为上边执行 func 和下边 decorator(func) 是等价的,所以上面 func.__name__ 是等价于下面 decorator(func).__name__ 的,那当然名字是 inner_function

def wrapper(func):
    def inner_function():
        pass
    return inner_function

def wrapped():
    pass

print(wrapper(wrapped).__name__)
#inner_function

那如何避免这种情况的产生?方法是使用 functools .wraps 装饰器,它的作用就是将 被修饰的函数(wrapped) 的一些属性值赋值给 修饰器函数(wrapper) ,最终让属性的显示更符合我们的直觉。

from functools import wraps

def wrapper(func):
    @wraps(func)
    def inner_function():
        pass
    return inner_function

@wrapper
def wrapped():
    pass

print(wrapped.__name__)
# wrapped

准确点说,wraps 其实是一个偏函数对象(partial),源码如下

def wraps(wrapped,
          assigned = WRAPPER_ASSIGNMENTS,
          updated = WRAPPER_UPDATES):
    return partial(update_wrapper, wrapped=wrapped,
                   assigned=assigned, updated=updated)

可以看到wraps其实就是调用了一个函数update_wrapper ,知道原理后,我们改写上面的代码,在不使用 wraps的情况下,也可以让 wrapped.__name__ 打印出 wrapped,代码如下:

from functools import update_wrapper

WRAPPER_ASSIGNMENTS = (&#039;__module__&#039;, &#039;__name__&#039;, &#039;__qualname__&#039;, &#039;__doc__&#039;,
                       &#039;__annotations__&#039;)

def wrapper(func):
    def inner_function():
        pass

    update_wrapper(inner_function, func, assigned=WRAPPER_ASSIGNMENTS)
    return inner_function

@wrapper
def wrapped():
    pass

print(wrapped.__name__)

内置装饰器:property

以上,我们介绍的都是自定义的装饰器。

其实Python语言本身也有一些装饰器。比如 property 这个内建装饰器,我们再熟悉不过了。

它通常存在于类中,可以将一个函数定义成一个属性,属性的值就是该函数return的内容。

通常我们给实例绑定属性是这样的

class Student(object):
    def __init__(self, name, age=None):
        self.name = name
        self.age = age

# 实例化
xiaoming = Student(&quot;小明&quot;)

# 添加属性
xiaoming.age=25

# 查询属性
xiaoming.age

# 删除属性
del xiaoming.age

但是稍有经验的开发人员,一下就可以看出,这样直接把属性暴露出去,虽然写起来很简单,但是并不能对属性的值做合法性限制。为了实现这个功能,我们可以这样写。

class Student(object):
    def __init__(self, name):
        self.name = name
        self.name = None

    def set_age(self, age):
        if not isinstance(age, int):
            raise ValueError(&#039;输入不合法:年龄必须为数值!&#039;)
        if not 0 &lt; age &lt; 100:
            raise ValueError(&#039;输入不合法:年龄范围必须0-100&#039;)
        self._age=age

    def get_age(self):
        return self._age

    def del_age(self):
        self._age = None

xiaoming = Student(&quot;小明&quot;)

# 添加属性
xiaoming.set_age(25)

# 查询属性
xiaoming.get_age()

# 删除属性
xiaoming.del_age()

上面的代码设计虽然可以变量的定义,但是可以发现不管是获取还是赋值(通过函数)都和我们平时见到的不一样。
按照我们思维习惯应该是这样的。

# 赋值
xiaoming.age = 25

# 获取
xiaoming.age

那么这样的方式我们如何实现呢。请看下面的代码。

class Student(object):
    def __init__(self, name):
        self.name = name
        self.name = None

    @property
    def age(self):
        return self._age

    @age.setter
    def age(self, value):
        if not isinstance(value, int):
            raise ValueError(&#039;输入不合法:年龄必须为数值!&#039;)
        if not 0 &lt; value &lt; 100:
            raise ValueError(&#039;输入不合法:年龄范围必须0-100&#039;)
        self._age=value

    @age.deleter
    def age(self):
        del self._age

xiaoming = Student(&quot;小明&quot;)

# 设置属性
xiaoming.age = 25

# 查询属性
xiaoming.age

# 删除属性
del xiaoming.age

@property 装饰过的函数,会将一个函数定义成一个属性,属性的值就是该函数return的内容。同时,会将这个函数变成另外一个装饰器。就像后面我们使用的 @age.setter@age.deleter

@age.setter 使得我们可以使用 XiaoMing.age = 25 这样的方式直接赋值。
@age.deleter 使得我们可以使用 del XiaoMing.age 这样的方式来删除属性。

property 的底层实现机制是「描述符」,为此我还写过一篇文章。

这里也介绍一下吧,正好将这些看似零散的文章全部串起来。

如下,我写了一个类,里面使用了 property 将 math 变成了类实例的属性

class Student:
    def __init__(self, name):
        self.name = name

    @property
    def math(self):
        return self._math

    @math.setter
    def math(self, value):
        if 0 &lt;= value &lt;= 100:
            self._math = value
        else:
            raise ValueError(&quot;Valid value must be in [0, 100]&quot;)

为什么说 property 底层是基于描述符协议的呢?通过 PyCharm 点击进入 property 的源码,很可惜,只是一份类似文档一样的伪源码,并没有其具体的实现逻辑。

不过,从这份伪源码的魔法函数结构组成,可以大体知道其实现逻辑。

这里我自己通过模仿其函数结构,结合「描述符协议」来自己实现类 property 特性。

代码如下:

class TestProperty(object):

    def __init__(self, fget=None, fset=None, fdel=None, doc=None):
        self.fget = fget
        self.fset = fset
        self.fdel = fdel
        self.__doc__ = doc

    def __get__(self, obj, objtype=None):
        print(&quot;in __get__&quot;)
        if obj is None:
            return self
        if self.fget is None:
            raise AttributeError
        return self.fget(obj)

    def __set__(self, obj, value):
        print(&quot;in __set__&quot;)
        if self.fset is None:
            raise AttributeError
        self.fset(obj, value)

    def __delete__(self, obj):
        print(&quot;in __delete__&quot;)
        if self.fdel is None:
            raise AttributeError
        self.fdel(obj)

    def getter(self, fget):
        print(&quot;in getter&quot;)
        return type(self)(fget, self.fset, self.fdel, self.__doc__)

    def setter(self, fset):
        print(&quot;in setter&quot;)
        return type(self)(self.fget, fset, self.fdel, self.__doc__)

    def deleter(self, fdel):
        print(&quot;in deleter&quot;)
        return type(self)(self.fget, self.fset, fdel, self.__doc__)

然后 Student 类,我们也相应改成如下

class Student:
    def __init__(self, name):
        self.name = name

    # 其实只有这里改变
    @TestProperty
    def math(self):
        return self._math

    @math.setter
    def math(self, value):
        if 0 &lt;= value &lt;= 100:
            self._math = value
        else:
            raise ValueError(&quot;Valid value must be in [0, 100]&quot;)

为了尽量让你少产生一点疑惑,我这里做两点说明:

  1. 使用TestProperty装饰后,math 不再是一个函数,而是TestProperty类的一个实例。所以第二个math函数可以使用 math.setter 来装饰,本质是调用TestProperty.setter 来产生一个新的 TestProperty 实例赋值给第二个math
  2. 第一个 math 和第二个 math 是两个不同 TestProperty 实例。但他们都属于同一个描述符类(TestProperty),当对 math 对于赋值时,就会进入 TestProperty.__set__,当对math 进行取值里,就会进入 TestProperty.__get__。仔细一看,其实最终访问的还是Student实例的 _math 属性。

说了这么多,还是运行一下,更加直观一点。

# 运行后,会直接打印这一行,这是在实例化 TestProperty 并赋值给第二个math
in setter
>&gt;&gt;
>&gt;&gt; s1.math = 90
in __set__
>&gt;&gt; s1.math
in __get__
90

如对上面代码的运行原理,有疑问的同学,请务必结合上面两点说明加以理解,那两点相当关键。

其他装饰器:装饰器实战

读完并理解了上面的内容,你可以说是Python高手了。别怀疑,自信点,因为很多人都不知道装饰器有这么多用法呢。

在我看来,使用装饰器,可以达到如下目的:

  • 使代码可读性更高,逼格更高;
  • 代码结构更加清晰,代码冗余度更低;

刚好我在最近也有一个场景,可以用装饰器很好的实现,暂且放上来看看。

这是一个实现控制函数运行超时的装饰器。如果超时,则会抛出超时异常。

有兴趣的可以看看。

import signal

class TimeoutException(Exception):
    def __init__(self, error=&#039;Timeout waiting for response from Cloud&#039;):
        Exception.__init__(self, error)

def timeout_limit(timeout_time):
    def wraps(func):
        def handler(signum, frame):
            raise TimeoutException()

        def deco(*args, **kwargs):
            signal.signal(signal.SIGALRM, handler)
            signal.alarm(timeout_time)
            func(*args, **kwargs)
            signal.alarm(0)
        return deco
    return wraps

感谢:
FOOFISH-PYTHON之禅
Mingle Wong公众号:Python编程时光

赞赏
Nemo版权所有丨如未注明,均为原创丨本网站采用BY-NC-SA协议进行授权,转载请注明转自:https://kanghaov.com/300.html
https://secure.gravatar.com/avatar/9fd8359b8faa6f7789f9623ba6041e4a?s=256&d=monsterid&r=g

kanghaov

文章作者

推荐文章

发表评论

textsms
account_circle
email

Nemo

Python装饰器详解
How to make a chain of function decorators? 什么是装饰器 装饰器的本质是函数。 装饰器放在一个函数开始定义的地方,就像一顶帽子一样戴在这个函数的头上。和这个函数绑定在一起。 我…
扫描二维码继续阅读
2019-08-16